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Abstract

This paper describes a model for polycrystalline ferromagnet-antiferromagnet

bilayers. Independent antiferromagnetic grains are coupled to a ferromag-

netic film both by direct coupling to the net moments at the interfaces of

the grains and by spin flop coupling. Rotation of the ferromagnetic mag-

netization applies a torque to the antiferromagnetic spins at the interface

of each grain which winds up partial domain walls in the antiferromagnet.

The model explains both the unidirectional anisotropy that gives rise to the

well known shifted hysteresis loops, and the hysteretic effects observed in

rotational torque and ferromagnetic resonance experiments. The uniaxial

anisotropy comes from grains in which the antiferromagnetic order is stable

as the magnetization is rotated. The hysteretic effects come from grains in

which the antiferromagnetic order irreversibly switches as the domain wall is

wound up past a postulated critical angle. For all of the models considered

here, spin flop coupling does not contribute to the unidirectional anisotropy.
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I. INTRODUCTION

The exchange coupling of ferromagnetic and antiferromagnetic films across their common

interface significantly modifies some of their properties. The most well known effect is a shift

in the hysteresis loop of the ferromagnet,1 called exchange bias. In the last ten years there has

been considerable interest in exchange-biased ferromagnetic films because the shift can be

useful in controlling the magnetization in devices, such as spin valves2 which sense changing

magnetic fields through the giant magnetoresistance effect.3 Read heads based on this effect

are starting to be used in magnetic disk storage.

The loop shift arises when the order in the antiferromagnet is established in the presence

of the ferromagnet. By itself, the antiferromagnet can order in any one of its degenerate

energy minima. When it is coupled to a ferromagnet, however, it chooses the state that

minimizes the energy due to coupling to the ferromagnet. Furthermore, the antiferromag-

net is only weakly coupled to external magnetic fields, so it retains a “memory” of the

ferromagnetic direction at the time when the antiferromagnetic order was set, even when

the ferromagnetic magnetization is later rotated. This coupling is often thought of as a

unidirectional anisotropy or as a fixed magnetic field acting at the interface.

The shift in the hysteresis loop is not the only effect that is found in exchange-biased

magnetic layers. Several effects, schematically illustrated in Fig. 1, indicate that there are

hysteretic processes occurring in these systems as the applied field is varied. Almost all

films show an increase in the coercivity when coupled to an antiferromagnet, even when

the sample is prepared in a state that does not show a bias. Additionally, in at least some

systems, different reversal mechanisms are observed for increasing and decreasing fields.4–6

This difference means that the average of the two reversal fields is not a reliable measure of

the size of the unidirectional anisotropy. Since at least one reversal mechanism is likely to

be non-uniform, physically meaningful models for the hysteresis loop are likely to be very

complicated.

In contrast, experiments done in magnetic fields high enough to saturate the ferromag-

2



netic magnetization are likely to be easier to model. One such experiment is high field

rotational torque,7,5,8,9 in which the sample is rotated in a constant field and the torque is

measured as a function of angle. The angular variation of the torque can be used to de-

termine the anisotropy of magnetic samples. In exchange biased films, it is generally found

that the torque does not integrate to zero over a full rotation, even in saturating fields.

Thus, irreversible work is being done when rotating the magnetization relative to the sam-

ple. As shown in Fig. 1(D), the rotational hysteresis remains large in high fields, implying

that hysteretic processes play an important role.

Another experiment done in fields high enough to saturate the magnetization is ferro-

magnetic resonance (FMR), also illustrated in Fig. 1. Since the ferromagnetic resonance

condition depends on the curvature of the energy with respect to angular variations of the

magnetization direction,10 FMR can also be used to determine the anisotropy of magnetic

samples. Typically, FMR experiments involve a constant frequency excitation and an ap-

plied field which is varied to achieve the resonance condition. Anisotropy terms, whether

they are intrinsic to the ferromagnet or due to coupling to the antiferromagnet, lead to

decreases in the resonance field in the easy directions of the anisotropy and increases in the

hard directions. Such variations are observed in FMR experiments on exchange biased films,

but are found to be superimposed on an isotropic negative shift in the resonance field.11–13

If the uniform shift in the resonance field were only negative for in-plane variation of the

magnetization, it could be explained by an increased surface anisotropy. However, since

recent measurements14,15 show that the shift is negative for out-of-plane magnetizations as

well, it must arise from hysteretic processes, as discussed in Section IIIB.

Most models for these systems have focused on explaining the size of the loop shift.

The simplest model gives a coupling that is orders of magnitude too strong compared to

the loop shifts that have been measured.7 In this model, the unidirectional anisotropy is

due to the exchange coupling across an ideal interface between fixed antiferromagnetic spins

and the interfacial ferromagnetic spins. The interface is assumed to be uncompensated,

i.e. only one antiferromagnetic sublattice is present. Several effects reduce the loop shift
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compared to the value predicted by this model. Néel4 and Mauri et al.16 pointed out that

it can be energetically more favorable to form domain walls parallel to the interface in the

antiferromagnet than to fix the antiferromagnetic moments and keep the exchange energy at

the interface. Allowing the rotation of the magnetization to spread into the antiferromagnet

can greatly reduce the expected loop shift.

Néel4 also pointed out that for realistically rough interfaces, the presence of both an-

tiferromagnetic sublattices at the interface, causing partial compensation of the moments,

will lead to a reduction in the coupling and hence the loop shift. For polycrystalline antifer-

romagnets, the statistical fluctuations in the number of spins at the interface of each grain

lead to such partial compensation, i.e. a net moment on each grain. Takano et al.17 have

measured a net magnetization in polycrystalline CoO/MgO multilayers, presumably due

to uncompensated spins at interfaces. They found the temperature dependence of the net

magnetization to be the same as the temperature dependence of the exchange anisotropy in

a multilayer in which a similar CoO film is grown next to Ni80Fe20. This similarity suggests

that these uncompensated spins at the interface are important for the exchange anisotropy.

For single crystal antiferromagnets, rough interfaces lead to vanishing average moments

for any macroscopic interface area. Malozemoff18 showed how domain walls in the system

perpendicular to the interface give rise to coupling for single crystal systems. In his model,

these domain walls can be thought of as effectively breaking the single crystal into a poly-

crystal.

Koon19 has shown that spin-flop effects in the antiferromagnet can lead to coupling even

for ideal interfaces that are completely compensated, i.e. those with no net moment. Spin-

flop coupling favors perpendicular alignment between the ferromagnet magnetization and

the sublattice magnetization in the antiferromagnet.

Hysteretic effects, such as the high field rotational hysteresis results and the isotropic

FMR field shift, cannot be explained by models in which the antiferromagnetic spins are

fixed and the ferromagnetic spins are uniform across the layer. In such models, the energy

is a single valued, continuous, and differentiable function of the magnetization direction. In
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a high field rotational hysteresis experiment with such a well-behaved energy function, the

magnetization direction is single valued, closely following the applied field, and no net work

is done when the magnetization is returned to its initial direction. Thus there is no high field

rotational hysteresis. On the other hand, Néel4 and Koon19 showed that rotational hysteresis

could result from irreversible motion of domain walls in the antiferromagnet, because the

irreversible motion makes the energy function discontinuous. For ferromagnetic resonance,

the well-behaved coupling energy would necessarily have regions with positive curvature

(easy directions) and negative curvature (hard directions). The isotropic resonance field

shift would not be observed because the resonance field would not only go down in directions

made easier by coupling, but also go up in directions made harder.

In this paper, we describe a model that can explain both the unidirectional anisotropy

and the hysteretic effects. We consider different limiting cases of a general model in different

sections. In Section II, we present the model for individual antiferromagnetic grains coupled

to a ferromagnetic film. The coupling energy includes the three contributions discussed

above, direct coupling to the net moment at the interface of the grain, spin-flop coupling,

and partial domain walls in the antiferromagnet. In addition to these energy terms, we

include the possibility of instabilities in the antiferromagnet. In Section IIIA, we calculate

the unidirectional anisotropy that arises from grains in which the antiferromagnetic order

is stable as the ferromagnetic magnetization is rotated. Section IIIB gives the high field

rotational hysteresis and the isotropic FMR field shift that arises from grains in which the

order is unstable. In these two Sections, IIIA and IIIB, we leave out the spin-flop coupling

contribution to the energy. In Section IIIC, we discuss the effect of spin-flop coupling on

the previous results. We discuss the implications of this model for the coercivity in Section

IVA, which includes non-uniformities in the ferromagnetic magnetization in the plane of the

interface. In Section IVB, we discuss the energy scales of domain walls in antiferromagnets.

In Section IVC, we discuss the reduction of the direct coupling at the interface due to

disorder at the interface. In Section IVD, we give a simple argument for the existence of

spin-flop coupling and a simple estimate of its size. Finally, in Section IVE, we discuss the
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consequences of domain walls in the ferromagnet perpendicular to the interface.

II. MODEL

In this model, the ferromagnetic layer interacts with independent antiferromagnetic

grains. We assume that the applied magnetic field is high enough that the ferromagnetic

magnetization can be assumed to be uniform. We also assume that the antiferromagnetic

grains are small enough that they do not break up into domains. Each grain is in a single

antiferromagnetic state except for any partial domain walls parallel to the interface that are

created by the coupling to the ferromagnet. There are three contributions to the energy for

each grain coupled to the ferromagnet;

E

Na2
=
−Jnet

a2
[M̂FM · m̂(0)] +

Jsf

a2
[M̂FM · m̂(0)]2 +

σ

2
[1− m̂(0) · (±û)] . (1)

For N spins at the interface of the grain, the interfacial area is Na2, where a is a lattice

constant. The important directions are M̂FM, the ferromagnetic magnetization, m̂(0), the

direction of the net sublattice magnetization of the antiferromagnet at the interface, and

±û, the two easy directions of the uniaxial anisotropy in the antiferromagnet. The energy

scales are Jnet, the average direct coupling to the net moment of the antiferromagnetic grain,

Jsf , the spin flop coupling, and σ, the energy of a 180◦ domain wall in the antiferromagnet.

The first term in Eq. 1 is the direct coupling at the interface. For each grain the net

coupling takes a definite value chosen from a statistical distribution with a mean that is

typically smaller than the bare coupling energy, Jint, by approximately 1/
√
N . This is

discussed in more detail in Section IVC. The second term in Eq. 1 is the spin-flop coupling

which favors a perpendicular relative orientation between the magnetizations of the films.

The mechanism for this coupling is discussed in more detail in Section IVD.

The third term in Eq. 1 is the energy of a partial domain wall in the antiferromagnetic

grain wound through an angle determined by cosα(±) = m̂(0) · (±û). For an individual

grain in a thick antiferromagnetic film, all of the spins in the partial domain wall lie in
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the plane defined by ±û and m̂(0). For a given direction of interfacial moment, m̂(0), the

energy of the partial domain wall in the antiferromagnet depends on the state in which the

antiferromagnet is ordered through the sign, (±). Two partial domain walls are shown in

Fig. 2.

For high field rotational hysteresis and the isotropic ferromagnetic resonance field shift to

exist, some of the antiferromagnetic grains in the system must make irreversible transitions.

To include these transitions in the model, we postulate that some grains have a critical angle,

αcrit, such that when the partial domain wall is wound up to an angle greater than αcrit, the

antiferromagnetic order becomes unstable, and the system makes a transition to another

state, which has reversed antiferromagnetic order far from the interface. (See Fig. 2 for an

example of possible states before and after such a transition.) Then, as the ferromagnetic

magnetization is rotated, the partial domain wall is wound up to the critical angle, and a

transition occurs.

One mode of instability in antiferromagnetic grains of finite thickness is unwinding from

the back surface of the film, the surface opposite the ferromagnet. Néel4 has extensively

studied partial domain walls in antiferromagnetic thin films with in-plane easy axes. Since

the back surface of the film is uncoupled, the energy of the partial domain wall as a function

of the sublattice magnetization direction at the interface is more complicated than that in

Eq. 1. Films thinner than δ/4 (δ is the domain wall width) only exist in a single state as the

interfacial magnetization of the antiferromagnet is rotated, while films thicker than δ/4 have

critical angles that range from 90◦ to 180◦ as the thickness of the film approaches infinity.4

In this thick film limit, the third term in Eq. 1 is a good approximation to the energy until

α is close to the critical angle.

Néel’s results hold for ideal films with no additional source of coercivity. Defects in the

antiferromagnet may stabilize the antiferromagnetic order, just as they can increase the

coercivity of ferromagnetic films. Equally, defects may provide nucleation sites for reversal

at smaller critical angles. Additional important nucleation sites for reversal may lie in the

grain boundaries. With these unknowns, we allow a more general critical angle and keep the
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simpler form for the energy, appropriate for an infinitely thick film, than would be implied

from Néel’s results.

In at least some samples of Ni80Fe20/NiO, the antiferromagnetic grains have a uniform

distribution of crystallographic orientations.20 While the relationship between the propa-

gation direction of the antiferromagnetic order and the easy axes of the antiferromagnetic

magnetization can be complicated in thin film antiferromagnets, we model the system as

having a uniform distribution of easy axis directions. In general, the distribution will not

be uniform; when an alternate distribution is measured, it can be averaged over, at least

numerically, in a straightforward manner. In addition, there is a distribution of direct cou-

pling strengths. To compare with experiment, all of the results in this paper would need

to be averaged over this distribution. At appropriate points, we discuss the effect of this

averaging.

III. RESULTS

A. Unidirectional anisotropy

In this section and the next, we ignore the spin-flop coupling. In this case, the en-

ergy, Eq. 1, can be readily minimized with respect to the antiferromagnetic magnetization

direction at the interface, m̂(0). The minimum is

E(±)

Na2
=
σ

2

(
1−

[
1 + 2rM̂FM · (±û) + r2

]1/2)
, (2)

where r = 2Jnet/σa
2, is the ratio of the direct coupling energy to half a domain wall energy.

The minimum energy configuration has û, M̂FM, and m̂(0) all lying in a plane. The partial

domain wall in the antiferromagnet is wound up through an angle, α, defined by

cosα(±) = m̂(0) · (±û)

=
rM̂FM · (±û) + 1√

1 + 2rM̂FM · (±û) + r2
. (3)
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For each direction of the ferromagnetic magnetization, there are two possible states of the

system, depending on the state of the antiferromagnet, as specified by the sign, (±). For

one particular grain, the two configurations are illustrated in Fig. 2. Figure 3 shows the

energies and angles of domain walls in this grain as a function of the angle of rotation of the

ferromagnetic magnetization.

In contrast to the behavior of XY spins, which we discuss below, Heisenberg spins are

not fixed to lie in a particular plane. In fact, the spins in the domain wall are contained

in the plane defined by M̂FM and û, which rotates as the ferromagnetic magnetization

is rotated, see Fig. 4. One important consequence of this behavior is that domain walls

are never wound up past 180◦. The domain wall is wound up to its maximum when the

magnetization is opposite the projection of the antiferromagnetic easy axis on the rotation

plane. When the magnetization is rotated further, the plane of the domain wall rotates

so that the domain wall unwinds rather than winding further. This result is reflected in

Eq. 3, where cosα(±) < 1 if M̂FM and û are not antiparallel. If a complete domain wall

were wound up, it would detach from the interface and sweep through the antiferromagnetic

grain, erasing the biased state. Thus, this unwinding of domain walls, which occurs for

Heisenberg spins, is necessary to preserve the biased state on rotation of the magnetization.

This unwinding of the domain wall holds as limiting behavior even when the rotation plane

includes the easy axis.

Experimentally, the biased state is prepared by allowing the antiferromagnet to order

in the presence of a fixed ferromagnetic magnetization. In the model, we choose the an-

tiferromagnetic state for each grain that gives the lower energy with the ferromagnetic

magnetization in the direction in which the biased state is prepared. If the grains have a

uniform distribution of orientations, this gives a unidirectional anisotropy with a minimum

in the bias direction.

Choosing the lower energy state for each grain corresponds to choosing the sign, (±), in

Eq. (2) such that ±û · M̂0 > 0, where M̂0 is the bias direction. Making this choice for the

sign and integrating the energy over all orientations of û amounts to averaging over a half

9



sphere. The result can be expressed in terms of Legendre polynomials of M̂FM · M̂0

E

Aσ/2
= F0(r)− F1(r)[M̂FM · M̂0]

+F3(r)
1

2

[
5(M̂FM · M̂0)

3 − 3(M̂FM · M̂0)
]

+higher odd polynomials, (4)

where A is the area of the sample (the sum of Na2 over all grains). The coefficients, Fn(r),

of the Legendre polynomials have different forms for r < 1 and r > 1, but are continuous

and twice differentiable at r = 1;

F0(r) =


−r2

3
r < 1

−r + 1− 1
3r

r > 1

F1(r) =


r
2

(
1− r2

5

)
r < 1

1
2

(
1− 1

5r2

)
r > 1

F3(r) =


r3

40

(
1− 5r2

9

)
r < 1

1
40r2

(
1− 5

9r2

)
r > 1

. (5)

From this result, the coefficient of the unidirectional anisotropy energy, −σexM̂FM · M̂0 is

σex =
σ

2
F1(r) (6)

which is plotted in Fig. 5. For weak coupling at the interface compared to the domain wall

energy, r < 1, the coefficient is approximately Jnet/2a
2. For strong coupling at the interface,

it crosses over to approximately σ/4. Averaging this result over a distribution of interface

coupling energies broadens the result somewhat. The behavior is the same in both limits,

but the limits are approached more slowly.

B. Irreversible effects

Both rotational hysteresis and isotropic negative FMR field shifts can be explained by

irreversible transitions in antiferromagnetic grains between two states that are degenerate
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in the absence of coupling to the ferromagnet. In the present model, grains behave in

different ways as the ferromagnetic magnetization is rotated in plane, depending on their

critical angle, αcrit, their orientation, û, and their ratio, r, of the interfacial coupling energy

to domain wall energy. Grains can either maintain a particular antiferromagnetic order

far from the interface (reversible behavior), or they can switch between the two possible

states (hysteretic behavior). Reversible grains contribute to the unidirectional anisotropy

and hysteretic grains contribute to the rotatable anisotropy seen in FMR and to the high

field rotational hysteresis, as explained more fully below. In grains with r < 1, domain walls

are never wound past 90◦ (see Eq. (3)), so these grains do not switch for αcrit > 90◦. For

simplicity, our discussion of instabilities focuses on the case αcrit > 90◦. In grains with r > 1,

domain walls are wound up to 180◦ when the plane of rotation includes the easy axis of the

antiferromagnet. As the easy axis moves further out of the plane toward the rotation axis

(here denoted by the interface normal ẑ for convenience), the winding of the domain wall is

less and less affected by motion of M̂FM. Grains with easy axes close enough to the interface

normal do not switch when the magnetization is rotated in-plane (around ẑ). The condition

for grains not to switch is determined by comparing the critical angle to the maximum angle

through which a domain wall is wound on a full rotation of the ferromagnetic magnetization.

Solving this condition for the angle of the easy axis with respect to the interface normal,

given by sin θ =
√

1− (û · ẑ)2, in terms of the coupling ratio, r and the critical angle, written

in terms of w = cosαcrit (note that for αcrit > 90◦, −1 < w < 0), gives

sin θ <
(1− w2)− w

√
r2 + w2 − 1

r
. (7)

These grains which do not switch add a unidirectional anisotropy for in-plane rotation of

the ferromagnetic magnetization, but this anisotropy is “erasable” for some out-of-plane

rotations of the magnetization. The unidirectional anisotropy contribution of grains which

behave reversibly for in-plane rotation of the magnetization is shown in Fig. 6(a) for several

values of αcrit.

Grains with r > 1, which do not satisfy the condition Eq. (7), switch antiferromagnetic
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states when the magnetization is rotated in plane (See Fig. 7 for example). Each grain that

undergoes hysteretic transitions changes energy by ∆E on each transition, where

∆E

σNa2/2
= +

[
r2 + 3− 2w2 − 2w

√
r2 + w2 − 1

]1/2
−
[
r2 − 1 + 2w2 + 2w

√
r2 + w2 − 1

]1/2
. (8)

This change in energy is independent of the orientation of the grain, provided the domain

wall is wound past its instability point. It is irreversibly lost and dissipated somewhere in

the system.

In a high field rotational hysteresis measurement, the work is the angular integral of the

torque, which is in turn the angular derivative of the energy. Thus, the work done in a full

rotation is equal to the total of the changes in the energy in the irreversible transitions.

Each grain that undergoes hysteretic transitions does a total work of 2∆E on each full

rotation of the magnetization, see Eq. (8). Since the change in energy is independent of the

orientation of the grain, averaging over a uniform distribution of grain orientations just gives

a factor that is the fraction of grains which undergo irreversible transitions when rotating

the magnetization in plane.

Figure 6(c) shows the average work per area per cycle, W , for grains with a critical angle

αcrit, a coupling ratio r, and averaged over easy-axis orientations. In this model, domain

walls never get wound past 90◦, unless r sin θ > 1, where θ is the angle of the easy axis with

respect to the interface normal. Thus, as the direct coupling becomes greater than the do-

main wall energy, r increasing past 1, more and more grains undergo irreversible transitions,

and the rotational hysteresis increases. As r increases even further, the energy change in

each irreversible transition, Eq. 8, decreases as the direction of the antiferromagnetic magne-

tization at the interface becomes more and more locked to the ferromagnetic magnetization

direction.

The grains that do switch for rotation of M̂FM in a given plane contribute an effective

field that tends to be aligned with the current magnetization direction, i.e. a rotatable

anisotropy. This effect can be seen in Fig. 7. As the magnetization is rotated in plane, it
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is on average closer to an energy minimum than to a maximum. The easy direction of that

grain switches to stay close to the current direction of the magnetization. With a collection

of grain orientations, the “average” easy direction always stays close to the direction of

ferromagnetic magnetization. If we use the critical angle αcrit to determine which grains

switch, but then assume that grains that switch do so as soon as the energy of the other

state is lower, the rotatable anisotropy takes the simple form

Era = −σraM̂FM · M̂ra, (9)

where M̂ra = M̂FM. Note that Era is an anisotropy that is constant for all magnetization

directions, yet has a non-zero curvature for variations around any direction. Using these

assumptions, σra is shown in Fig. 6(b). Because grains either contribute to the unidirectional

anisotropy or to the rotatable anisotropy, the rotatable anisotropy shown in Fig. 6(b), and

the contribution to the unidirectional anisotropy from hysteretic grains shown in Fig. 6(a)

add together to give the unidirectional anisotropy for non-hysteretic grains shown in Fig. 5.

If the actual reversal is used, the rotatable anisotropy is not exactly aligned with the current

direction of the magnetization and depends on the history of the magnetization. However,

since the curvature of M̂FM · M̂ra, which is relevant to FMR measurements, is quadratic in

the angular deviation around M̂ra = M̂FM, the deviation of M̂ra from M̂FM does not make

a large contribution.

The rotatable anisotropy will make important contributions to other experiments

which, like ferromagnetic resonance, are sensitive to the curvature of the free energy

around the magnetization direction. Examples of such measurements are Brillouin light

scattering,21 anisotropic magnetoresistance measurements of small-angle perturbations,22

and AC susceptibility.23

Ferromagnetic resonance measurements of the unidirectional anisotropy and the rotatable

anisotropy14,15 show that in at least some samples, the rotatable anisotropy is greater than

the unidirectional anisotropy. If the present model applies to these samples, the results

shown in Fig. 6 imply both that the direct coupling is large compared to the domain wall
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energy and that the critical angle is close to 90◦ in at least a large fraction of the grains in

these samples.

In some systems, it is possible to reduce the interfacial coupling by increasing the width

of a spacer layer between the antiferromagnet and the ferromagnet.24 If all critical angles

are greater than 90◦, grains with weak interfacial coupling, r < 1, do not contribute to

the hysteretic processes. Once the interfacial coupling is weak enough, the unidirectional

anisotropy will decrease proportionally to the average coupling r. In this regime, the rotat-

able anisotropy and the rotational hysteresis should decrease even faster than the uniaxial

anisotropy, roughly as 1− erf(1/
√
πr).

Schlenker et al.25 have speculated that a “distribution of coercivities in the antiferromag-

netic grains” can give reversible and hysteretic behavior. Here, we show that distributions

of other properties can also produce these behaviors.

C. Spin-flop coupling

To investigate the effect of spin-flop coupling, we add it to the model used in the previous

section. For completely compensated interfaces with fixed spins, rotating the orientation of

the ferromagnetic moment with respect to the antiferromagnetic moments gives rise to no

interaction between the films. However, if the moments in the antiferromagnetic sublattices

are allowed to cant with respect to each other while the ferromagnetic magnetization is

rotated, see Fig. 8, the moments of the antiferromagnet near the interface can tilt a little

in the direction of the ferromagnetic moment when the magnetizations of the two films are

perpendicular to each other, lowering the energy of the films and giving rise to the spin-flop

coupling.19

Figure 8 illustrates how both a direct coupling to the net moment of a grain and the

spin flop coupling coexist in each grain. Like the model in the previous section, the model

with spin-flop reduces to simple forms in the limits when the domain wall energy is either

strong or weak compared to the coupling at the interface. In the limit that the domain wall
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energy is strong, the energy reduces to the interfacial terms

E

Na2
=
Jnet

a2
(M̂FM · (±û)) +

Jsf

a2
(M̂FM · û)2. (10)

When averaged over orientations, the direct coupling terms give the exchange bias and

the spin-flop coupling terms sum to an orientation independent constant because averaging

(M̂FM · û)2 (and higher even harmonics) over a half sphere gives an orientation-independent

constant. Thus, the spin-flop coupling has no effect on the unidirectional anisotropy in this

limit.

However, based on the simple argument given in Section IVD, we expect the opposite

limit to be relevant. If the spin-flop coupling is stronger than the direct coupling at the

interface, we expect that the coupling at the interface is so strong that the moments at the

interface will be locked in a configuration that minimizes the interfacial energy, forcing partial

domain walls to be wound up in the antiferromagnet. In this limit, the magnetization of the

ferromagnet, M̂FM, and the magnetization of the antiferromagnetic grain at the interface,

m̂(0), are required to make an angle determined by

m̂FM · m̂(0) = cosχ =


1 h < 1

1/h h > 1
, (11)

where h = 2Jsf/Jnet. If the ratio of the couplings is less than one, the two directions are

collinear, χ = 0.

Locking the spin configuration at the interface requires that partial domain walls be

wound up in the antiferromagnetic grains. The minimum energy wall is found when the di-

rection of the antiferromagnetic magnetization at the interface is coplanar with the direction

of the ferromagnetic magnetization and the easy axis of the antiferromagnet. In this config-

uration, the energy of the partial domain wall depends on which state the antiferromagnet

is ordered in and is given by

E(±)

Na2
=
σ

2
(1− cosα(±)). (12)

The energy depends on the angle, α(±) between the antiferromagnetic magnetization at the

interface and the easy axis. Using the angles defined above, the domain wall angles are
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α(−) = cos−1[û · M̂FM]− χ (13)

α(+) = π − cos−1[û · M̂FM]− χ, (14)

and the energy is

E(±)

Na2
=
σ

2
+
σ

2

[
±1

h
M̂FM · û

−

√
h2 − 1

h

√
1−

(
M̂FM · û

)2
]
. (15)

The first term in the square brackets contributes to the unidirectional anisotropy. The

last term in the square brackets in this equation gives the effective spin-flop coupling for

this grain. Figure 9 shows energy for a typical grain in one antiferromagnetic state as the

magnetization is rotated in plane, for several ratios of spin-flop coupling to direct coupling.

For spin-flop coupling weaker than the direct coupling, h < 1, h should be replaced by 1 in

Eq. 15. In this limit the spin-flop coupling has no effect whatsoever.

Figure 9 shows how the energy varies as a function of the rotation angle of the ferromag-

netic magnetization as the spin-flop coupling is increased. When the spin-flop coupling is

comparable to the direct coupling, h >∼ 1 the energy for this grain has a strong unidirectional

component. As the spin-flop coupling increases, the unidirectional component decreases and

the uniaxial component increases. In the limit of pure spin-flop coupling, h → ∞, there is

no unidirectional component at all.

When the energy, Eq. 15, is averaged over the easy axis orientations, the result in the

biased state is

E

A
= −

σ

4h
M̂FM · M̂0. (16)

Note that the effective spin-flop parts of the interaction in Eq. 15 make no contribution to

the total interaction, Eq. 16, as was the case in the limit of large domain wall energy. What

remains is the same as found without spin-flop but has the additional factor of 1/h, provided

h > 1. The unidirectional anisotropy constant is shown in the inset of Fig. 9. In the limit

of strong spin flop coupling, the unidirectional anisotropy goes to zero like 1/h = Jnet/2Jsf
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because domain walls never get wound up past 90◦. In Sec. IIIA, we discussed how domain

walls in Heisenberg antiferromagnets with uniaxial anisotropy never get wound up past 180◦

with direct coupling. Similarly, 90◦ partial domain walls can unwind with spin-flop coupling

at the interface. Equations (13) and (14) show that in the limit of strong spin-flop coupling,

where χ→ π/2, the domain wall angles satisfy |α(±)| ≤ π/2, since the range of cos−1[û·M̂FM]

is 0 to π.

Thus, the inclusion of spin flop coupling reduces the unidirectional anisotropy dramat-

ically. If we assume that the spin-flop energy Jsf is one third of Jint as found by Koon,19

and 30 nm is a typical grain diameter, then, the number of interface spins is roughly N ≈

10000, and the value of h is approximately 75. When divided by this factor, typical do-

main wall energies, see Sec. IVB become too small to give the observed bias. Either the

simple estimates for the size of the spin-flop coupling are grossly in error or there are other

assumptions of the model that lead to incorrect behavior.

One way to change the model so that it will stabilize domain walls wound past 90◦

with spin-flop coupling is to change the anisotropy of the antiferromagnet. If the dominant

anisotropy is an easy-plane, rather than an easy-axis anisotropy, and there is a smaller easy

axis anisotropy in the easy-plane, the system can be modeled by a collection of XY spins

with uniaxial anisotropy. This is the model originally studied by Koon.19 In this model,

the domain wall cannot unwind by changing its plane of rotation because the spins in the

domain wall are forced to lie in a particular plane. This allows domain walls to be wound

past 90◦ and hence to give rise to a unidirectional anisotropy. However, when a domain

wall is wound up to 180◦, it still cannot unwind, and in the absence of any other source

of coercivity in the antiferromagnet, the domain wall can detach from the interface and

propagate through the antiferromagnet, erasing the biased state.

Looking at the model with XY spins in more detail, the energy, Eq. (1) does not change,

except that the antiferromagnetic magnetization is constrained to be perpendicular to some

direction, p̂. The first consequence of this is that even in the limit in which the interfacial

coupling is strong compared to the domain wall energy, the interfacial coupling cannot
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necessarily take its minimum value because the antiferromagnetic spins cannot rotate out

of their allowed plane. With this constraint, in the limit of strong interfacial coupling, the

domain wall angles, Eq. (13) and Eq. (14), become

α(−) = cos−1

 û · M̂FM√
1− (p̂ · M̂FM)2


± cos−1

1

h

1√
1− (p̂ · M̂FM)2

 (17)

α(+) = π − cos−1

 û · M̂FM√
1− (p̂ · M̂FM)2


± cos−1

1

h

1√
1− (p̂ · M̂FM)2

 , (18)

where û is the anisotropy axis perpendicular to p̂. When the absolute value of the argument

of the last cos−1 in each equation is greater than one, the argument should be replaced by

one, setting the terms to zero.

An important difference between the model with Heisenberg spins and this model with

XY spins, is that the argument of the first cos−1 in Eqs. (17,18) has the extreme values ±1

when M̂FM is rotated through 360◦ (in any plane). In this case, rotating the ferromagnetic

magnetization winds up complete domain walls, in contrast to the case of the model with

Heisenberg spins, in which the partial domain walls unwind, as discussed in Section IIIA.

The complete domain walls are not attached to the interface as the partial domain walls

are. When the complete domain wall detaches from the interface and sweeps through the

grain, it essentially switches the antiferromagnetic order far from the interface. The partial

domain wall then makes a transition from α(±) = ±π to α(∓) = 0. After the transitions, the

energy in the partial domain wall can be described either as going to zero, with a domain

wall energy irreversibly lost, or as continuing to increase above a domain wall energy.

An alternate possibility to switching the antiferromagnetic order is that the complete

domain walls get pinned somewhere in the antiferromagnet by some additional source of

coercivity, allowing multiple domain walls to be wound up. Either of these possibilities have

experimental consequences that should be observable in rotational torque experiments. If
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the domain walls propagate out the back of the sample, the bias would be partially “erased”

in experiments in which the (saturated) magnetization is rotated through some large angle.

Such behavior is not seen in ferromagnetic resonance experiments.14 On the other hand,

winding of multiple walls should also be observable in a rotational torque experiment in

which the magnetization is rotated a full circle in one direction, and then rotated back in

the opposite direction. The rotational hysteresis should be significantly less on the return

trip than it was on the forward trip since the antiferromagnetic domain walls will contribute

a restoring torque.

IV. DISCUSSION

A. Coercivity

Predicting the coercivity from the model described above is more complicated than

predictions for experiments in which the ferromagnetic magnetization is uniform. Since the

coercivity of a biased film is generally quite different than the coercivity of a similar, but

unbiased film, it is not correct to use the same model of magnetization reversal that describes

the unbiased film. If the reversal mechanism are different for increasing and decreasing

magnetic fields,6 two models for the coercivity would be needed.

In one qualitative model for a hysteresis measurement, as the field is reduced from satu-

ration, the antiferromagnetic grains apply torques to the ferromagnetic magnetization that

vary from grain to grain in magnitude, and direction. This variation in torques leads to rip-

ple in the ferromagnetic magnetization in the plane of the interface. With the field applied

parallel or antiparallel to the bias direction, there are torques in both directions, so that some

parts of the system will nucleate clockwise reversal while others will nucleate counterclock-

wise reversal. These variations lead to a barrier for reversal, and lead to irreversible work

being done in the ferromagnet when that barrier is overcome. However, for applied fields

perpendicular to the bias direction (but still in the interface plane), all of the local torques
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are in the same direction so the barrier to reversal is significantly reduced. This reduction

in the coercivity for perpendicular field directions has been observed experimentally.26

Even for perpendicular field directions, coupling to the antiferromagnetic grains should

still increase the coercivity, due to hysteretic behavior in the antiferromagnetic grains. If

the width of domain walls in the ferromagnet is much larger than the grain size, the magne-

tization reversal effectively proceeds by local coherent rotation, from the perspective of the

antiferromagnetic grains. If this rotation had the same sense for increasing and decreasing

fields, the hysteretic transitions would contribute an area to the hysteresis loop equal to the

high field rotational hysteresis. However, it is likely that the rotation will be in opposite

senses for increasing and decreasing fields. This means that there will be parts of the system

that behave irreversibly in the rotational hysteresis measurement, but not in magnetization

reversal. Thus we expect that the contribution to the area of the hysteresis loop from these

hysteretic transitions will be somewhat smaller than the high field rotational hysteresis. On

the other hand, there are likely to be some irreversible processes intrinsic to the ferromagnet

associated with non-uniform domain wall motion in the ferromagnet. These processes will

increase the area of the hysteresis loop, but will not affect the high-field rotational hysteresis

measurement.

Other models have been developed to describe the thermal and temporal behavior of

exchange-bias systems. Néel4 developed an analogy between the behavior of an antiferro-

magnet and a standard phenomenological model for a ferromagnet. From this analogy, he

provides explanations for the behavior of exchange-bias systems when the hysteresis loop is

cycled through several times. Fulcomer and Charap27 developed a model for the thermal

behavior by considering a distribution of antiferromagnetic grains with simple behavior. The

thermal instability of the grains gives rise to the temperature dependence of the exchange

bias.27–29

The model presented here differs from that given by Fulcomer and Charap27 in several

respects. In that model, the antiferromagnetic grains have a uniform orientation and a

uniform magnetization. They have distributions of interfacial coupling energies and barriers
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to reversal. In the present model, the antiferromagnetic grains have completely random

orientations and partial domains walls. We consider the effects of instability in the grains

on measurements like ferromagnetic resonance and rotational torque. However, we have not

considered detailed distributions of critical angles or associated energy barriers.

B. Antiferromagnetic domain walls

The properties of domain walls in the antiferromagnet are determined by the antiferro-

magnet’s exchange coefficient, AAF, and anisotropy energies, Ku; for uniaxial anisotropy, the

domain wall energy is σ = 4
√
AAFKu, and the domain wall width is δ = π

√
AAF/Ku. The

exchange coefficient, AAF, is related to the exchange constant, JAF by AAF = fJAFS
2
AF/a,

where f is a numerical factor of order unity that depends on the crystal structure, a is a lat-

tice constant, and SAF is the length of the spin. When the thickness of the antiferromagnet

is small enough compared to a domain wall width, a partial domain wall will “see” the end

of the film and unwind itself, switching the antiferromagnetic spins far from the interface,

and removing the bias effect.4 Experiments9,30,31 show that the exchange bias does not set

in for NiO until the thickness is about 40 nm. This thickness can be used as an estimate of

the domain wall width in these thin films.

There are several experiments that have yielded values of AAF and Ku, for bulk and

single crystal antiferromagnets32,33. In bulk NiO, the strongest anisotropy is an easy plane

anisotropy; the domain wall properties for rotations of the spins out of this plane are σAF ≈

12.4 mJ/m2, and δAF ≈ 11 nm.32 In this easy plane, there is a weaker six-fold anisotropy; the

domain wall properties for rotations of the spin in the easy plane are, σAF ≈ 0.068 mJ/m2,

and δAF ≈ 2.0 µm.33 In bulk FeF2, the dominant anisotropy is uniaxial; the properties of

the domain wall are σAF ≈ 6.4 mJ/m2, and δAF ≈ 1.38 nm. These values may be useful as a

guide for evaluating theoretical results, but there is convincing evidence that the anisotropy

of some antiferromagnetic materials is different in thin films, perhaps because of stresses in

the films. In CoO/Fe3O4 [001] multilayers, for example, the Co spins lie along the [11̄0] or
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[110] directions,34 while in bulk CoO, the spins have three easy axes canted 8◦ out of each

111 plane.35 Also, in single crystal platelets of NiO, the surface can be “lightly pressed” to

orient the alternating planes of spins.33

C. Direct Interfacial Coupling

At the interface between the ferromagnet and the antiferromagnet, there are two contri-

butions to the coupling energy, direct collinear coupling to the net moment of the antifer-

romagnet and indirect spin-flop coupling. In this section and the next, we present simple

estimates of the size of both. The strength of the direct coupling depends on the degree of

compensation of the moments at the interface and on the interfacial area of the independent

parts of the antiferromagnet. A completely compensated interface has the same number of

moments from each magnetic sublattice of the antiferromagnet, and hence no net moment.

However, over finite areas the compensation is not exact because the interfaces are rough.

In particular, the interface of each grain in a polycrystalline antiferromagnet will have a

small net moment, due to a predominance of spins from one sublattice or the other at the

interface. Even nominally uncompensated interface orientations, those on which moments

from one sublattice predominate for ideal interfaces, will be mostly compensated due to the

roughness at the interface exposing terraces of both sublattices. Because of the roughness of

the interfaces, we assume that each grain of an antiferromagnet has an almost compensated

magnetic interface, regardless of the crystallographic orientation.

If the difference in the number of spins from the two sublattices is statistically distributed

around zero, the mean magnitude of the difference is proportional to
√
N , for a grain with

N spins at the interface.17 The total direct exchange coupling between the ferromagnet,

assumed to be uniform, and this grain is then equal to the exchange constant, Jint for

an individual pair of spins across the interface times the net number of spins. Thus the

average magnitude per spin of the direct coupling is roughly Jnet ≈ Jint/
√
N . The interfacial

exchange constant, Jint, is usually assumed to be similar in magnitude to the exchange
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constant in the ferromagnet or the antiferromagnet. Typical exchange constants are JAF ≈

19 meV in NiO32 and about JFM ≈ 10-50 meV in fcc alloys of Ni and Fe.36 However, we note

that, since the exchange mechanism in the ferromagnet is direct and the exchange mechanism

in the antiferromagnet may be superexchange for example, as in NiO, the interfacial exchange

constant may be very different from either of the bulk values.

D. Spin flop coupling

The strength of the spin-flop coupling depends on the interfacial exchange, Jint and an

effective exchange Jeff , which is related to the antiferromagnetic exchange, JAF by a simple

numerical factor. To estimate the strength of the spin-flop coupling consider the situation

when the ferromagnet spins and the antiferromagnetic spins are essentially perpendicular

to each other. Then, if the antiferromagnetic spins cant at a small angle, δθ, the interfacial

energy per antiferromagnetic spin is reduced by approximately Jintnintδθ, where nint is the

number of nearest neighbor ferromagnetic spins coupled to each antiferromagnetic spin at

the interface. At the same time, the antiferromagnet energy is increased by approximately

JAF(nAF/2)(2δθ)2/2, where nAF is the number of nearest neighbor spins of the opposite

sublattice for an antiferromagnetic spin at the interface. There are additional contribu-

tions for neighbors below the interface, which can be included by making nAF an effective

number of neighbors. Because the interfacial energy reduction is linear in δθ and the an-

tiferromagnet energy increase is quadratic, there is a minimum in the combined energy,

−J2
intn

2
int/(4JAFnAF). Since nint and nAF depend on the interface geometry, we characterize

the spin flop coupling by an effective exchange interaction, Jsf = J2
int/Jeff . For each grain,

the total spin-flop coupling is given by this energy times the number of interfacial spins, N ,

for that grain.

For typical grain sizes and for comparable values of the interfacial exchange constant

and the antiferromagnetic exchange constant, this simple argument implies that the spin-

flop coupling is much stronger than the direct coupling to the net moment of each grain.
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The average magnitude of the net direct coupling is reduced from the exchange constant

Jint by a factor of
√
N , but the spin flop coupling is only reduced from Jint by the factor

Jint/Jeff . There is experimental evidence in several systems34,37 that the antiferromagnetic

moments are perpendicular to the ferromagnetic moments.

E. Ferromagnetic domain walls

In this section, we focus on domain walls in the ferromagnet perpendicular to the interface.

In a soft ferromagnet, the properties of domain walls are mainly determined by the applied

field and the exchange, when the applied field is higher than the anisotropy fields of the

ferromagnet. In this case, the domain wall energy, 8
√

2µ0HMFMAFM, increases and the

domain wall width, 4π
√
AFM/2µ0HMFM, decreases with the square root of the applied field,

H. Here MFM is the magnetization of the ferromagnet, and AFM is the exchange coefficient.

Thus, for high enough applied field, the domain wall will be completely squeezed out of

the ferromagnet and into the antiferromagnet. The size of the necessary field is set by the

domain wall energy of the antiferromagnet.

If the hysteretic processes that contribute to the isotropic FMR field shift and the high

field rotational hysteresis occur in the ferromagnet, the field dependence of these effects

should be different than if they occur only in the antiferromagnet. In the ferromagnet,

the winding of domain walls parallel to the interface could give an isotropic FMR field

shift and a high field rotational hysteresis if the ferromagnet makes irreversible transitions

between configurations. However, if such irreversible processes do not occur in the anti-

ferromagnet, both effects should go away in fields high enough to push domains walls into

the antiferromagnet. In addition, when there are partial domain walls in the ferromagnet,

the ferromagnetic magnetization is not fully saturated. In many exchange biased systems,

the remanent magnetization is very close to the saturation magnetization, implying that

domain walls cannot occupy a large fraction of the film thickness. In an Ni81Fe19/FeMn

exchange-bias system, neutron scattering measurements38 showed that there was no domain
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wall in the ferromagnetic Ni81Fe19. While there are indications that domain walls parallel

to the interface in the ferromagnet could be important in other systems,34,22 we assume that

the applied field is large enough to saturate the ferromagnetic magnetization.

V. SUMMARY

The results in this paper fall into two basic categories. In Sec. II, We presented a model

to explain both unidirectional anisotropy (Section IIIA) and hysteretic effects (IIIB)that are

seen experimentally in exchange-bias systems. Then in Sec. IIIC, we discussed the behavior

of different models for the interfacial coupling and the symmetry of the antiferromagnetic

spins.

The rotational hysteresis seen in high field rotational torque measurements and the

isotropic resonance field shift seen in ferromagnetic resonance measurements both suggest

that there are irreversible processes occurring in at least some multilayers that exhibit an ex-

change bias. Since these measurements are done in magnetic fields high enough to saturate

the ferromagnetic magnetization, these irreversible processes must occur in the antiferro-

magnet. Irreversible processes in the antiferromagnet imply that the exchange bias is more

complicated than simply a coupling to a fixed antiferromagnetic state. In fact, these irre-

versible processes imply that the coupling must be strong enough in some antiferromagnetic

grains to reverse the order far from the interface.

The loop shift seen in hysteresis measurements as well as the high field rotational hystere-

sis and the isotropic FMR field shift can be explained by a model in which the ferromagnet

is coupled to independent antiferromagnetic grains with random orientations. Here, we have

assumed that the antiferromagnet consists of Heisenberg spins with uniaxial anisotropy and

that the coupling at the interface is the direct coupling of the ferromagnetic magnetization

to the net predominance of one antiferromagnetic sublattice over the other at the grain in-

terface. The exchange bias comes about because the antiferromagnetic order is established

in the presence of the ferromagnetic magnetization, and the strength of the bias is approxi-
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mately set by the lesser of the strength of the average direct coupling and the domain wall

energy.

To explain the irreversible processes, we postulate that in some grains the coupling at

the interface is strong enough to wind up partial domain walls in the antiferromagnet as

the ferromagnetic magnetization is rotated. The state of these grains becomes unstable if

the partial domain walls are wound past some critical angle. When the domain walls are

wound past this angle, the antiferromagnetic order in the grain changes irreversibly. As the

magnetization is rotated in the plane, the energy lost in these transitions gives the hysteresis

seen in rotational torque experiments. In addition, the transitions in the unstable grains

put the system in lower energy states; this means that on average the easy direction of these

grains points toward the ferromagnetic magnetization. This behavior can be described as

a rotatable anisotropy, always favoring the present magnetization direction. The rotatable

anisotropy gives rise to an isotropic FMR field shift.

Table I summarizes the results of the models considered in this paper. For both Heisen-

berg spins and XY spins, if the total interfacial coupling is not strong enough to wind up

domain walls in the antiferromagnet, the direct coupling gives a unidirectional anisotropy

and the spin-flop coupling contributes a uniaxial anisotropy (from each grain), but no unidi-

rectional anisotropy. For Heisenberg spins, if the total interfacial coupling is strong enough

to wind up partial domain walls, the direct coupling gives a unidirectional anisotropy which

is reduced by the spin-flop coupling because the partial domain walls tend to unwind when

they get wound up close to 90◦. In the limit that the spin-flop coupling is much stronger than

the direct coupling, the unidirectional component goes to zero. For XY spins and strong

interfacial coupling, direct coupling and spin-flop coupling behave similarly. When the cou-

pling is strong enough to wind up partial domain walls in the antiferromagnet, the walls

do not unwind, but rather complete domain walls get wound up. These are pushed away

from the interface, and propagate out the back surface of the antiferromagnet, effectively

reversing the antiferromagnetic state.
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TABLES

Heisenberg spins XY spins

Energy limits α σex α σex

σ � Jnet Jsf = 0 ≈ 0 Jnet/2a
2 ≈ 0 Jnet/2a

2

σ � Jsf Jnet = 0 ≈ 0 0 ≈ 0 0

Jnet � σ Jsf = 0 ≤ 180◦ σ/4 No bound Erasable

Jsf � σ Jnet = 0 ≤ 90◦ 0 No bound Erasable

TABLE I. Unidirectional anisotropy for several models. For different limiting cases of the

relative values of the domain wall energy, σ, the direct coupling at the interface, Jnet, and the

spin-flop coupling, Jsf , this table gives the bounds on the angles of partial domain walls, α, and

the size of the unidirectional anisotropy, σex. “No bound” implies that (multiple) domain walls

can be wound up past 180◦, which then makes the exchange bias “erasable.”
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FIG. 1. Experimental Characteristics of exchange biasing. Panels (A), (C), and (E) show

typical experimental results for free ferromagnetic films. Panels (B), (D), and (F) show how the

results change when the film is exchange biased by coupling to an antiferromagnetic film. Compared

to panel (A), the magnetization in panel (B) shows a shifted loop, increased coercivity (loop width),

and possibly different reversal mechanisms for increasing and decreasing fields. Compared to panel

(C), panel (D) shows that energy is dissipated when rotating the sample in an applied field, even

at fields high enough to saturate the magnetization. Compared to panel (E) the ferromagnetic

resonance field in panel (F) shows an overall shift down, corresponding to an increase in the

resonance frequency at fixed field, and angular variation typical of a unidirectional anisotropy.
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FIG. 2. Two configurations of an antiferromagnetic grain coupled to a ferromagnetic layer. The

white spheres are the antiferromagnetic atoms on the sublattice that predominates at the interface,

the dark gray spheres are the other sublattice, and the light gray spheres are the ferromagnetic

atoms in the bottom atomic layer of the ferromagnetic thin film with a uniform magnetization

direction, M̂FM. In each sphere, the arrow gives the direction of the atomic moment. In the

structure to the left (right), the antiferromagnet has ordered in the û (−û) direction far from the

interface. In each, the coupling with the ferromagnetic layer has wound up a partial domain wall.

The directions of the antiferromagnetic spins in one sublattice, and the ferromagnetic spins are

given in the top panels.
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FIG. 3. Domain wall angle, α and energy of an antiferromagnetic grain coupled to a ferromag-

netic layer. For a grain with an easy axis in the x̂ direction and a ratio of coupling strength to

domain wall energy, r=1.5, the top panel shows, as a function of the angle, φ of the ferromagnetic

magnetization with respect to the x-axis, the domain wall angle and the bottom panel shows the

energy. In each panel, the solid (dashed) curve gives the result for the sublattice magnetization

along û (−û) far from the interface, see Fig. 2.
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FIG. 4. Unwinding of domain walls. Panel (a) shows the geometry being considered: the

ferromagnetic magnetization M̂FM is at an angle φ with respect to the x-axis, and the easy axis of

the antiferromagnet has a component out of the interface plane, with an in plane projection along

the x-axis. Panels (b-e) show the plane of the antiferromagnetic spins in the partial domain wall

as the ferromagnetic magnetization is rotated from the easy direction, φ = 0, through the hard

direction, φ = π. Note that the angle of the partial domain wall, α, increases when going from

the easy direction to the hard direction and then decreases without winding up a complete domain

wall.
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FIG. 5. Unidirectional anisotropy energy for a distribution of stable grains averaged over grain

orientations, Eq. 6. The dotted line is σex = Jnet/2a
2.
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FIG. 6. Hysteretic effects. For three different critical angles, 90◦ (solid curves), 120◦ (dashed

curves), and 150◦ (dotted curves), panel (a) gives the unidirectional anisotropy due to grains that,

although unstable, are never wound up past the instability point. Panel (b) gives the rotatable

anisotropy. Panel (c) gives the work done, due to hysteretic transitions in the antiferromagnetic

grains, in one a full rotation of the magnetization in the sample plane. All results have been

averaged over the orientations of the grains.
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FIG. 7. Energy of a hysteretic antiferromagnetic grain coupled to a ferromagnetic layer. For

the grain described in Fig. 3, now with an instability angle, αcrit, the top (bottom) panel shows the

domain wall angle (coupling energy). The thin dotted lines are inaccessible parts of the curves. As

the ferromagnetic magnetization is rotated through the angle φ, the domain wall angle eventually

exceeds the critical angle, and the antiferromagnetic grain makes a transition to the other state.

The transitions are given by the vertical lines, and the energy difference at the critical angle is ∆E.
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FIG. 8. Antiferromagnetic spins coupled to a ferromagnet. Panel (a) and (b) show a top view of

the interfacial spins for the ferromagnetic magnetization in the easy direction of the direct coupling

to the antiferromagnet (a) and perpendicular to it (b). In panel (a) the coupling between the

ferromagnet and the net moment at the interface of the antiferromagnet is strong and the spin-flop

coupling vanishes. In panel (b), the coupling to the net moment vanishes, but spin-flop coupling

is substantial. Panel (c) shows the coupling to the net moment (thin solid line), the spin-flop

coupling (dashed line), and the total coupling (thick solid line). Also shown is the coupling to

the net moment if the antiferromagnet were in the reversed state (dotted line). In this state, the

spin-flop coupling is unchanged. The angle χ shows the relative angle of minimum energy between

the ferromagnetic magnetization, M̂FM and the sublattice magnetization of the antiferromagnet

at the interface, m̂(0).
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FIG. 9. Variation of coupling energy with the inclusion of spin-flop coupling. The coupling

energy, Eq. 15, for a particular antiferromagnetic state for a grain with its easy axis along (1,0,0) is

shown for various values of the spin-flop coupling h = 2Jsf/Jnet, h = 1.1 (solid), h = 2.0 (dashed),

h = 10.0 (dotted). As the spin-flop coupling increases, the unidirectional component decreases and

the uniaxial component increases. The inset shows the size of the unidirectional anisotropy energy

after averaging over grain orientations, Eq. 16, as a function of the size of the spin-flop coupling.
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